Factors Associated with Self-Rated Health after Kidney Transplantation: A Prospective Study

Maria Majernikova a–c, Lucia Prihodova b, Jaroslav Rosenberger a–e, Iveta Nagyova b, c, Robert Roland a, d, Johan W. Groothoff f, Jitse P. van Dijk b, f

a Nephrology and Dialysis Centre, Fresenius Medical Care, b Graduate School Kosice Institute for Society and Health, Faculty of Medicine, PJ Safarik University, c Institute of Public Health, Department of Social Medicine, Faculty of Medicine, PJ Safarik University, d Transplantation Department of the 1st Surgery Clinic, Faculty of Medicine, University Hospital of Louis Pasteur, PJ Safarik University, and e 1st Internal Clinic, Faculty of Medicine, University Hospital of Louis Pasteur, PJ Safarik University, Kosice, Slovakia; f Department of Social Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands

Key Words
Kidney transplantation · Self-rated health · Glomerular filtration rate · Rejection · Immunosuppressant side effects

Abstract
Background: This prospective study explores and compares the relationship between patients’ self-rated health (SRH) after kidney transplantation (KT) at different follow-up periods and its medical and nonmedical predictors over time. Methods: Patients (n = 128) who completed a questionnaire (the SRH question of the SF-36 and the End-Stage Renal Disease Symptom Checklist – Transplantation Module) were enrolled. Clinical data were retrieved from medical files. The sample was stratified into early (n = 89) and late (n = 39) cohorts according to time since KT at baseline. Linear regression was used to identify predictors of SRH at follow-up. Results: In both cohorts, a change in glomerular filtration rate (GFR) over time remained a predictor of SRH; in the early cohort, age was an additional predictor; in the late cohort, a change in transplantation-associated psychological distress over time and the number of late acute rejection episodes during the observation period were additional predictors. Conclusions: Improvement in GFR over time predicted better SRH at each period after KT. Decreased transplantation-associated psychological distress and fewer late acute rejection episodes seemed to predict better SRH at a later follow-up period. Despite these observations, higher SRH was associated with better clinical outcomes.

Introduction

Self-rated health (SRH) is considered a reliable indicator of mortality and morbidity in patients with end-stage renal disease (ESRD) [1, 2]. Thong et al. [3] investigated the predictive utility of SRH, measured shortly after the start of dialysis, on mortality and found SRH to be an independent predictor of mortality in dialysis patients at up to 7 years of follow-up. Spiegel et al. [4] indicated in their systematic review of ESRD the importance of SRH as it is connected with traditional biomarkers. Avitzur et al. [5] explored SRH in pediatric patients who were 10-year sur-
vivors of transplantation and who had an excellent graft function and a high self-reported quality of life. Thus, SRH seems to be a predictor of future health status and has become an important outcome criterion in the evaluation of medical treatment of ESRD [6].

In previous studies of patients after kidney transplantation (KT), improvements in SRH have been found to be associated with younger age, male gender, higher education, higher socioeconomic status, higher social support and lower number of comorbidities – not only with the success of the transplantation [7]. Studies in ESRD have focused mainly on associations between components of better self-perceived health and objective factors of higher graft function [8, 9]. The subjective evaluation of the side effects of immunosuppressants [10] as well as rejection episodes continues to be a significant problem in long-term attrition of graft function [11], and also seems to be connected to poorer SRH [10].

To our knowledge, there is only one study analyzing the associations between a change in objective factors over time and SRH at follow-up [12]. In addition, studies comparing predictors in SRH in prospective studies stratified by time after KT are lacking. Thus, the aim of this study was (a) to explore changes over time in the subjective evaluation of the SF-36 and its first item have been confirmed in patients SGF-36 scores between 0 and 100, with higher scores indicating better health status [15]. The validity and reliability of the SF-36 and its first item have been confirmed in patients with renal disease, including those after KT [8, 16–18].

Side effects of immunosuppressive treatment were assessed by the End-Stage Renal Disease Symptom Checklist – Transplantation Module (ESRD SCL-TM), which consists of six subscales: limited physical capacity (10 items), limited cognitive capacity (8 items), cardiac and renal dysfunction (7 items), side effects of corticosteroids (5 items), increased growth of gum and hair (5 items) and transplantation-associated psychological distress (8 items) [19]. This questionnaire can be used to measure the side effects of immunosuppressive treatment as well as its disease-specific distress [19]. For each item, the patient can rate the severity of the symptom on a subscale from 0 (not at all) to 5 (extremely). The scores for the subscales are transformed into a scale score by dividing the severity index score by the number of items in the subscales [19]. Higher scores indicate a higher level of side effects from immunosuppressive treatment. In this sample, Cronbach’s α was 0.89 for limited physical capacity, 0.87 for limited cognitive capacity, 0.85 for cardiac and renal dysfunction, 0.81 for side effects of corticosteroids, 0.85 for increased growth of gum and hair and 0.84 for transplantation-associated psychological distress.

Clinical data were retrieved from medical files. These included serum creatinine, weight, duration of dialysis (in years), current immunosuppressive treatment, function immediately after KT, number of early acute rejection episodes, number of late acute rejection episodes and chronic renal allograft dysfunction during the observation period. Glomerular filtration rate (GFR) was calculated using the Cockcroft-Gault formula [20]. Rejection episodes (early acute, late acute and chronic renal allograft dysfunction) were diagnosed after biopsy according to the Banff 2009 update on diagnostic categories for renal allograft biopsies [21]. An early acute rejection episode was defined as an acute rejection...
episode occurring within 3 months, and a late acute rejection episode was defined as the last acute rejection episode occurring after 3 months independently of a previous early acute rejection episode [22, 23].

Statistics

The Mann-Whitney U test and χ^2 test were used to check the differences between respondents and nonrespondents. Frequencies, means and standard deviations were calculated for the sample description. Bivariate analyses were used for determining the strength and direction of the association between SRH at baseline and follow-up in both cohorts stratified by time after transplantation and the others factors. Stepwise linear regression was performed in order to identify the predictors of SRH at follow-up in the cohorts stratified by time after transplantation (early cohort means 3 months and late cohort means 12 months from baseline). The independent variables were age, gender, change in all six subscales of the ESRD SCL-TM questionnaire over time (between baseline and follow-up examination) and SRH at baseline from the SF-36 questionnaire, the change in GFR over time (between baseline and follow-up examination), duration of dialysis (in years), the number of early acute rejection episodes, the number of late acute rejection episodes, and chronic renal allograft dysfunction during the observation period. The Statistical Package for the Social Sciences (SPSS Inc., Chicago, Ill., USA) version 16.0 was used for statistical analyses.

Results

No significant differences were found between respondents and nonrespondents regarding age, gender and medical factors, or between patients who provided complete and incomplete data. In addition, no significant differences regarding the independent variables were found between the cohorts stratified by time after transplantation at baseline and at follow-up.

In both cohorts, the side effects of immunosuppressive treatment and the mean limited physical capacity significantly increased over time (between baseline and follow-up; $p \leq 0.01$); on the other hand, the mean transplantation-associated psychological distress significantly decreased over time ($p \leq 0.05$). The mean SRH significantly increased over time ($p \leq 0.001$) as did the mean GFR over time ($p \leq 0.001$). Other variables did not significantly differ from baseline to follow-up. The pairwise associations for SRH at baseline and follow-up in the cohorts with each of the factors are indicated in table 1.

Gender, the change in five subscales of the ESRD SCL-TM over time (limited physical capacity, limited cogni-
tive capacity, cardiac and renal dysfunction, the side effects of corticosteroids, and increased growth of gum and hair), duration of dialysis, the number of early acute rejection episodes during the observation period, and chronic renal allograft dysfunction during the observation period were not predictors associated with SRH at follow-up in the regression models of the stratified cohorts.

The regression model of the early cohort (n = 89) explained 66.2% of SRH variance at follow-up. A change in GFR over time contributed significantly to this model, as did a change in transplantation-associated psychological distress over time, the number of late acute rejection episodes during the observation period, and SRH at baseline. More detailed information is presented in table 2.

Discussion

In this study we (a) explored changes over time in medical and nonmedical factors associated with SRH, and (b) compared their associations with SRH at follow-up for early and late cohorts stratified by time since transplantation. Over a follow-up observation period in the
early and late cohorts, SRH and GFR increased, while transplantation-associated psychological distress decreased. Previous studies have found an association between a higher GFR rate and better SRH [8, 9].

In the early cohort, worse SRH at baseline as well as at follow-up was associated with elderly, higher limited physical capacity, higher limited cognitive capacity, higher cardiac and renal dysfunction, higher transplantation-associated psychological distress and early acute rejection episodes. Additionally, worse SRH at baseline was associated with female gender and, at follow-up, with lower GFR. In the late cohort, worse SRH at baseline, as well as at follow-up, was associated with late acute rejection episodes. Moreover, worse SRH at baseline was associated with female gender and, at follow-up, lower GFR, higher limited physical capacity, higher transplantation-associated psychological distress and chronic renal allograft dysfunction. Associations between elderly, females, individual evaluations in disease-specific distress, rejection episodes and poorer well-being were also found [7–9, 18].

A change in GFR over time consistently predicted SRH at follow-up in both cohorts. Furthermore, better SRH at follow-up was predicted by fewer late acute rejection episodes during the observation period in the late cohort after KT. Age was a predictor of SRH at follow-up in the early cohort only.

Our results indicate important differences in predictors of SRH at follow-up in the early cohort compared to the late cohort after KT. For the early cohort after KT, a change in GFR over time and age are predictors associated with SRH at follow-up. We have previously reported similar results in a smaller sample [12]. However, in the late cohort after KT, in addition to the change in GFR over time, the change in transplantation-associated psychological distress over time and the number of late acute rejection episodes during the observation period contributed significantly to the explanation of the variance in SRH at follow-up.

Late acute rejection episodes during the observation period seem to have a significant relationship to SRH at a late period after KT. So far, late acute rejection episodes cause lower GFR and poor SRH. Moreover, a decreased GFR predicts poor SRH, and not only when it occurs during late acute rejection episodes. Djamali et al. [24] showed that decreased graft function after late acute rejection is associated with poor patient and allograft survival, which might be connected to poor SRH as well. Individual perceptions in disease-specific distress of transplantation also give the impression of having a significant relationship to SRH at a late period after KT. Similar to our findings, Drent et al. [25] divided their group of transplanted patients into short- and long-term cohorts and showed differences between these groups: the long-term cohort reported more individual negative experiences than the short-term cohort did.

Strengths and Limitations

The strength of this study is its longitudinal design, which enabled us to explore changes in factors associated with SRH as well as the associations between these changes and SRH at follow-up in the early and the late cohorts stratified according to time after KT. Missing data is a limitation of this study; however, there were no differences in age and gender between respondents and nonrespondents. On the other hand, all consecutive patients originating from one major transplant center in Slovakia over a number of years were asked to participate in the study to prevent selection bias.

Recommendations and Implications

Results must be verified in a larger sample to allow for generalization. In addition, we only studied patients from baseline to 3 and 12 months after transplantation; therefore, prolonging the study period is necessary. Thus, in a future study, pretransplantation SRH is needed to study its role in influencing post-transplantation SRH at follow-up. We could then verify whether SRH after KT remains dependent on the factors found in the cohorts before transplantation, or whether in a longer period of time.
ter KT other variables become important. Furthermore, the pathways between psychological, physical and medical determinants associated with SRH should be studied. In conclusion, improvement in graft function over time predicted better SRH at each period of follow-up. Decreased transplantation-associated psychological distress did not seem to be important in the first year after KT, instead only beyond 1 year after KT. Moreover, fewer late acute rejection episodes seemed to predict better SRH at a late follow-up period. Despite these observations, higher SRH was associated with better clinical outcomes.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under contract No. APVV-20-038305 (80%) and partially supported by the Agency of the Slovak Ministry of Education for the Structural Funds of the EU under project No. ITMS:26220120058 (20%).

Disclosure Statement

The authors have no conflicts of interest.

References